Extensions 1→N→G→Q→1 with N=C23 and Q=C2×Dic3

Direct product G=N×Q with N=C23 and Q=C2×Dic3
dρLabelID
Dic3×C24192Dic3xC2^4192,1528

Semidirect products G=N:Q with N=C23 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C23⋊(C2×Dic3) = C22×A4⋊C4φ: C2×Dic3/C22S3 ⊆ Aut C2348C2^3:(C2xDic3)192,1487
C232(C2×Dic3) = C2×C23.7D6φ: C2×Dic3/C6C4 ⊆ Aut C2348C2^3:2(C2xDic3)192,778
C233(C2×Dic3) = C24.29D6φ: C2×Dic3/C6C22 ⊆ Aut C2396C2^3:3(C2xDic3)192,779
C234(C2×Dic3) = C24.49D6φ: C2×Dic3/C6C22 ⊆ Aut C2348C2^3:4(C2xDic3)192,1357
C235(C2×Dic3) = C2×D4×Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2396C2^3:5(C2xDic3)192,1354
C236(C2×Dic3) = C22×C6.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3:6(C2xDic3)192,1398

Non-split extensions G=N.Q with N=C23 and Q=C2×Dic3
extensionφ:Q→Aut NdρLabelID
C23.1(C2×Dic3) = C2×A4⋊C8φ: C2×Dic3/C22S3 ⊆ Aut C2348C2^3.1(C2xDic3)192,967
C23.2(C2×Dic3) = A4⋊M4(2)φ: C2×Dic3/C22S3 ⊆ Aut C23246C2^3.2(C2xDic3)192,968
C23.3(C2×Dic3) = C4×A4⋊C4φ: C2×Dic3/C22S3 ⊆ Aut C2348C2^3.3(C2xDic3)192,969
C23.4(C2×Dic3) = C24.4D6φ: C2×Dic3/C22S3 ⊆ Aut C2348C2^3.4(C2xDic3)192,971
C23.5(C2×Dic3) = C25.S3φ: C2×Dic3/C22S3 ⊆ Aut C2324C2^3.5(C2xDic3)192,991
C23.6(C2×Dic3) = C245Dic3φ: C2×Dic3/C6C4 ⊆ Aut C23244C2^3.6(C2xDic3)192,95
C23.7(C2×Dic3) = (C22×C12)⋊C4φ: C2×Dic3/C6C4 ⊆ Aut C23484C2^3.7(C2xDic3)192,98
C23.8(C2×Dic3) = (C6×D4).16C4φ: C2×Dic3/C6C4 ⊆ Aut C23484C2^3.8(C2xDic3)192,796
C23.9(C2×Dic3) = (C6×D4)⋊10C4φ: C2×Dic3/C6C4 ⊆ Aut C23484C2^3.9(C2xDic3)192,799
C23.10(C2×Dic3) = C24.13D6φ: C2×Dic3/C6C22 ⊆ Aut C2348C2^3.10(C2xDic3)192,86
C23.11(C2×Dic3) = (C2×C12).Q8φ: C2×Dic3/C6C22 ⊆ Aut C23484C2^3.11(C2xDic3)192,92
C23.12(C2×Dic3) = C24.19D6φ: C2×Dic3/C6C22 ⊆ Aut C2396C2^3.12(C2xDic3)192,510
C23.13(C2×Dic3) = C42.187D6φ: C2×Dic3/C6C22 ⊆ Aut C2396C2^3.13(C2xDic3)192,559
C23.14(C2×Dic3) = C123M4(2)φ: C2×Dic3/C6C22 ⊆ Aut C2396C2^3.14(C2xDic3)192,571
C23.15(C2×Dic3) = C24.30D6φ: C2×Dic3/C6C22 ⊆ Aut C2396C2^3.15(C2xDic3)192,780
C23.16(C2×Dic3) = C12.76C24φ: C2×Dic3/C6C22 ⊆ Aut C23484C2^3.16(C2xDic3)192,1378
C23.17(C2×Dic3) = Dic3×C22⋊C4φ: C2×Dic3/Dic3C2 ⊆ Aut C2396C2^3.17(C2xDic3)192,500
C23.18(C2×Dic3) = C24.58D6φ: C2×Dic3/Dic3C2 ⊆ Aut C2396C2^3.18(C2xDic3)192,509
C23.19(C2×Dic3) = C12.5C42φ: C2×Dic3/Dic3C2 ⊆ Aut C2396C2^3.19(C2xDic3)192,556
C23.20(C2×Dic3) = C42.43D6φ: C2×Dic3/Dic3C2 ⊆ Aut C2396C2^3.20(C2xDic3)192,558
C23.21(C2×Dic3) = D4×C3⋊C8φ: C2×Dic3/Dic3C2 ⊆ Aut C2396C2^3.21(C2xDic3)192,569
C23.22(C2×Dic3) = C42.47D6φ: C2×Dic3/Dic3C2 ⊆ Aut C2396C2^3.22(C2xDic3)192,570
C23.23(C2×Dic3) = (C6×D4).11C4φ: C2×Dic3/Dic3C2 ⊆ Aut C2396C2^3.23(C2xDic3)192,793
C23.24(C2×Dic3) = C2×D4.Dic3φ: C2×Dic3/Dic3C2 ⊆ Aut C2396C2^3.24(C2xDic3)192,1377
C23.25(C2×Dic3) = C24.3Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2348C2^3.25(C2xDic3)192,84
C23.26(C2×Dic3) = C24.12D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2348C2^3.26(C2xDic3)192,85
C23.27(C2×Dic3) = (C2×C12)⋊C8φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.27(C2xDic3)192,87
C23.28(C2×Dic3) = C12.(C4⋊C4)φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.28(C2xDic3)192,89
C23.29(C2×Dic3) = C4×C4.Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.29(C2xDic3)192,481
C23.30(C2×Dic3) = C127M4(2)φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.30(C2xDic3)192,483
C23.31(C2×Dic3) = C42.285D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.31(C2xDic3)192,484
C23.32(C2×Dic3) = C42.270D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.32(C2xDic3)192,485
C23.33(C2×Dic3) = C24.6Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2348C2^3.33(C2xDic3)192,766
C23.34(C2×Dic3) = C4×C6.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.34(C2xDic3)192,768
C23.35(C2×Dic3) = C24.74D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.35(C2xDic3)192,770
C23.36(C2×Dic3) = C24.75D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.36(C2xDic3)192,771
C23.37(C2×Dic3) = C2×C12.D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2348C2^3.37(C2xDic3)192,775
C23.38(C2×Dic3) = C2×C12.10D4φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.38(C2xDic3)192,785
C23.39(C2×Dic3) = C25.4S3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2348C2^3.39(C2xDic3)192,806
C23.40(C2×Dic3) = C22×C4.Dic3φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.40(C2xDic3)192,1340
C23.41(C2×Dic3) = C2×C23.26D6φ: C2×Dic3/C2×C6C2 ⊆ Aut C2396C2^3.41(C2xDic3)192,1345
C23.42(C2×Dic3) = (C2×C12)⋊3C8central extension (φ=1)192C2^3.42(C2xDic3)192,83
C23.43(C2×Dic3) = C2×C4×C3⋊C8central extension (φ=1)192C2^3.43(C2xDic3)192,479
C23.44(C2×Dic3) = C2×C42.S3central extension (φ=1)192C2^3.44(C2xDic3)192,480
C23.45(C2×Dic3) = C2×C12⋊C8central extension (φ=1)192C2^3.45(C2xDic3)192,482
C23.46(C2×Dic3) = C2×C12.55D4central extension (φ=1)96C2^3.46(C2xDic3)192,765
C23.47(C2×Dic3) = C2×C6.C42central extension (φ=1)192C2^3.47(C2xDic3)192,767
C23.48(C2×Dic3) = C23×C3⋊C8central extension (φ=1)192C2^3.48(C2xDic3)192,1339
C23.49(C2×Dic3) = Dic3×C22×C4central extension (φ=1)192C2^3.49(C2xDic3)192,1341
C23.50(C2×Dic3) = C22×C4⋊Dic3central extension (φ=1)192C2^3.50(C2xDic3)192,1344

׿
×
𝔽