| extension | φ:Q→Aut N | d | ρ | Label | ID | 
|---|
| C23.1(C2×Dic3) = C2×A4⋊C8 | φ: C2×Dic3/C22 → S3 ⊆ Aut C23 | 48 |  | C2^3.1(C2xDic3) | 192,967 | 
| C23.2(C2×Dic3) = A4⋊M4(2) | φ: C2×Dic3/C22 → S3 ⊆ Aut C23 | 24 | 6 | C2^3.2(C2xDic3) | 192,968 | 
| C23.3(C2×Dic3) = C4×A4⋊C4 | φ: C2×Dic3/C22 → S3 ⊆ Aut C23 | 48 |  | C2^3.3(C2xDic3) | 192,969 | 
| C23.4(C2×Dic3) = C24.4D6 | φ: C2×Dic3/C22 → S3 ⊆ Aut C23 | 48 |  | C2^3.4(C2xDic3) | 192,971 | 
| C23.5(C2×Dic3) = C25.S3 | φ: C2×Dic3/C22 → S3 ⊆ Aut C23 | 24 |  | C2^3.5(C2xDic3) | 192,991 | 
| C23.6(C2×Dic3) = C24⋊5Dic3 | φ: C2×Dic3/C6 → C4 ⊆ Aut C23 | 24 | 4 | C2^3.6(C2xDic3) | 192,95 | 
| C23.7(C2×Dic3) = (C22×C12)⋊C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C23 | 48 | 4 | C2^3.7(C2xDic3) | 192,98 | 
| C23.8(C2×Dic3) = (C6×D4).16C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C23 | 48 | 4 | C2^3.8(C2xDic3) | 192,796 | 
| C23.9(C2×Dic3) = (C6×D4)⋊10C4 | φ: C2×Dic3/C6 → C4 ⊆ Aut C23 | 48 | 4 | C2^3.9(C2xDic3) | 192,799 | 
| C23.10(C2×Dic3) = C24.13D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C23 | 48 |  | C2^3.10(C2xDic3) | 192,86 | 
| C23.11(C2×Dic3) = (C2×C12).Q8 | φ: C2×Dic3/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.11(C2xDic3) | 192,92 | 
| C23.12(C2×Dic3) = C24.19D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C23 | 96 |  | C2^3.12(C2xDic3) | 192,510 | 
| C23.13(C2×Dic3) = C42.187D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C23 | 96 |  | C2^3.13(C2xDic3) | 192,559 | 
| C23.14(C2×Dic3) = C12⋊3M4(2) | φ: C2×Dic3/C6 → C22 ⊆ Aut C23 | 96 |  | C2^3.14(C2xDic3) | 192,571 | 
| C23.15(C2×Dic3) = C24.30D6 | φ: C2×Dic3/C6 → C22 ⊆ Aut C23 | 96 |  | C2^3.15(C2xDic3) | 192,780 | 
| C23.16(C2×Dic3) = C12.76C24 | φ: C2×Dic3/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.16(C2xDic3) | 192,1378 | 
| C23.17(C2×Dic3) = Dic3×C22⋊C4 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C23 | 96 |  | C2^3.17(C2xDic3) | 192,500 | 
| C23.18(C2×Dic3) = C24.58D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C23 | 96 |  | C2^3.18(C2xDic3) | 192,509 | 
| C23.19(C2×Dic3) = C12.5C42 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C23 | 96 |  | C2^3.19(C2xDic3) | 192,556 | 
| C23.20(C2×Dic3) = C42.43D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C23 | 96 |  | C2^3.20(C2xDic3) | 192,558 | 
| C23.21(C2×Dic3) = D4×C3⋊C8 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C23 | 96 |  | C2^3.21(C2xDic3) | 192,569 | 
| C23.22(C2×Dic3) = C42.47D6 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C23 | 96 |  | C2^3.22(C2xDic3) | 192,570 | 
| C23.23(C2×Dic3) = (C6×D4).11C4 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C23 | 96 |  | C2^3.23(C2xDic3) | 192,793 | 
| C23.24(C2×Dic3) = C2×D4.Dic3 | φ: C2×Dic3/Dic3 → C2 ⊆ Aut C23 | 96 |  | C2^3.24(C2xDic3) | 192,1377 | 
| C23.25(C2×Dic3) = C24.3Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 48 |  | C2^3.25(C2xDic3) | 192,84 | 
| C23.26(C2×Dic3) = C24.12D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 48 |  | C2^3.26(C2xDic3) | 192,85 | 
| C23.27(C2×Dic3) = (C2×C12)⋊C8 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.27(C2xDic3) | 192,87 | 
| C23.28(C2×Dic3) = C12.(C4⋊C4) | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.28(C2xDic3) | 192,89 | 
| C23.29(C2×Dic3) = C4×C4.Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.29(C2xDic3) | 192,481 | 
| C23.30(C2×Dic3) = C12⋊7M4(2) | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.30(C2xDic3) | 192,483 | 
| C23.31(C2×Dic3) = C42.285D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.31(C2xDic3) | 192,484 | 
| C23.32(C2×Dic3) = C42.270D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.32(C2xDic3) | 192,485 | 
| C23.33(C2×Dic3) = C24.6Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 48 |  | C2^3.33(C2xDic3) | 192,766 | 
| C23.34(C2×Dic3) = C4×C6.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.34(C2xDic3) | 192,768 | 
| C23.35(C2×Dic3) = C24.74D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.35(C2xDic3) | 192,770 | 
| C23.36(C2×Dic3) = C24.75D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.36(C2xDic3) | 192,771 | 
| C23.37(C2×Dic3) = C2×C12.D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 48 |  | C2^3.37(C2xDic3) | 192,775 | 
| C23.38(C2×Dic3) = C2×C12.10D4 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.38(C2xDic3) | 192,785 | 
| C23.39(C2×Dic3) = C25.4S3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 48 |  | C2^3.39(C2xDic3) | 192,806 | 
| C23.40(C2×Dic3) = C22×C4.Dic3 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.40(C2xDic3) | 192,1340 | 
| C23.41(C2×Dic3) = C2×C23.26D6 | φ: C2×Dic3/C2×C6 → C2 ⊆ Aut C23 | 96 |  | C2^3.41(C2xDic3) | 192,1345 | 
| C23.42(C2×Dic3) = (C2×C12)⋊3C8 | central extension (φ=1) | 192 |  | C2^3.42(C2xDic3) | 192,83 | 
| C23.43(C2×Dic3) = C2×C4×C3⋊C8 | central extension (φ=1) | 192 |  | C2^3.43(C2xDic3) | 192,479 | 
| C23.44(C2×Dic3) = C2×C42.S3 | central extension (φ=1) | 192 |  | C2^3.44(C2xDic3) | 192,480 | 
| C23.45(C2×Dic3) = C2×C12⋊C8 | central extension (φ=1) | 192 |  | C2^3.45(C2xDic3) | 192,482 | 
| C23.46(C2×Dic3) = C2×C12.55D4 | central extension (φ=1) | 96 |  | C2^3.46(C2xDic3) | 192,765 | 
| C23.47(C2×Dic3) = C2×C6.C42 | central extension (φ=1) | 192 |  | C2^3.47(C2xDic3) | 192,767 | 
| C23.48(C2×Dic3) = C23×C3⋊C8 | central extension (φ=1) | 192 |  | C2^3.48(C2xDic3) | 192,1339 | 
| C23.49(C2×Dic3) = Dic3×C22×C4 | central extension (φ=1) | 192 |  | C2^3.49(C2xDic3) | 192,1341 | 
| C23.50(C2×Dic3) = C22×C4⋊Dic3 | central extension (φ=1) | 192 |  | C2^3.50(C2xDic3) | 192,1344 |